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We found that Sweet potato feathery mottle virus (SPFMV) P1, a close homologue of Sweet potato mild mottle virus P1, did not
have any silencing suppressor activity. Remodeling the Argonaute (AGO) binding domain of SPFMV P1 by the introduction of
two additional WG/GW motifs converted it to a silencing suppressor with AGO binding capacity. To our knowledge, this is the
first instance of the transformation of a viral protein of unknown function to a functional silencing suppressor.

RNA silencing is a sequence-specific cellular process that leads
to RNA degradation, inhibition of translation of mRNAs, or

heterochromatin formation (10). RNA silencing has several func-
tions; one of the most important is to counteract viruses and
transposons. Viruses evolved silencing suppressors to inhibit RNA
silencing (1). Cellular proteins possessing WG/GW domains are
known to bind Argonaute (AGO) via their tryptophan (W) resi-
dues (3, 4, 6, 13, 15). The P1 protein of Sweet potato mild mottle
virus (SPMMV) is a silencing suppressor that is able to counteract
the active RNA-induced silencing complex (RISC) by binding
AGO (5). Compared to the P1 proteins of members of the Potyvi-
rus genus, ipomoviral SPMMV P1 has a long extension at its N-
terminal end harboring 3 WG/GW domains spanning amino acid
(aa) 1 to aa 140, and this region is absolutely necessary for sup-
pressor activity and AGO binding (5). The closest homolog of
SPMMV P1 is Sweet potato feathery mottle virus (SPFMV) P1 (14,
5). We sought to determine whether SPFMV P1 possesses RNA
silencing suppressor activity. To do this, we prepared first-strand
cDNA from RNA isolated from SPFMV-infected sweet potato
plants commercially available at the German Collection of Micro-
organisms and Cell Cultures. Using degenerate primers (5=-AAG
GATCCATGGCAWCYGYNATCBGYATYTGYGAA and 3=-AG
AATTCTTTARWAYTGVDYGATRWATGGYARRRYRGAYCTA
CCAAG) designed according to available sequence data, we am-
plified the P1 open reading frame of a Nigerian SPFMV isolate
(GenBank accession number JQ742091). Sequence analysis re-
vealed a 689-aa protein that is 80 to 95% identical to known
SPFMV P1 proteins. The N-terminal 193-aa region of SPFMV P1
was 41.5% identical to the corresponding part of SPMMV P1; the
rest of the protein was 22% identical. However, the overall identity
was 24.6%. Although the N-terminal 193-aa region of SPFMV P1
showed the highest homology to SPMMV P1, it contains only one
WG/GW domain (Fig. 1A). To see if SPFMV P1 is able to inhibit
RNA silencing, we performed the standard Agrobacterium coinfil-
tration assay (12). The coding region ending with a stop codon for
SPFMV P1 was N terminally HA (hemagglutinin) tagged by being
cloned into the binary vector pSanyi (7), transferred to agrobac-
teria, and then used with an agrobacterial strain harboring the
35S-labeled green fluorescent protein (GFP)-encoding reporter
gene to coinfiltrate leaves of wild-type (WT) Nicotiana benthami-
ana. As a positive control, SPMMV P1 was used. Figure 1B and C
show that 35S-GFP remained silenced in the presence of SPFMV
P1; however, as was shown before, SPMMV P1 strongly inhibited

silencing (5). Previously it was shown that the loss of any two of
the WG/GW motifs of SPMMV P1 correlated with loss of silenc-
ing suppressor activity (5). We hypothesized, therefore, that the
sole WG/GW motif in WT SPFMV P1 might be insufficient for
silencing suppressor activity. Due to the high degree of amino acid
identity between the SPFMV and SPMMV P1 proteins at their
N-terminal ends, we determined amino acids in SPFMV P1 cor-
responding to the tryptophan residues of the second and third
WG/GW motifs in SPMMV P1 (Fig. 1A). Using primers GATGT
CCTGGATGGATGGAAGTGTGACAGCTGC and GCAGCTGT
CACACTTCCATCCATCCAGGACATC along with primers CTA
GAGCGTTAGGAGGGTGGGATGCATACTGTG and CACAGT
ATGCATCCCACCCTCCTAACGCTCTAG (nucleotide changes
are underlined), the histidine residue at position 109 and the ty-
rosine residue at position 139 were changed to tryptophan using
the QuikChange XL mutagenesis kit. Thus, three mutants,
H109W, Y139W, and H109W/Y139W, were created, resulting in
one additional WG/GW motif in the first two mutants, and two
additional WG/GW motifs in the third. The mutants were tested
for suppressor activity as described above. The H109W and
Y139W mutants did not show silencing suppressor activity how-
ever, the H109W/Y139W mutant inhibited RNA silencing as well
as SPMMV P1 (Fig. 1B). Our in vivo data were confirmed by
Northern and Western blotting as described previously (5) (Fig. 1C).

The latter is a silencing suppressor that is able to inhibit active
RISC (5). Next we checked if the highly homologous WT SPFMV
P1 and/or any of the mutants we created interfere with active
RISC. SPFMV strains expressing P1 and H109W, H139W, and
H109W/Y139W mutant P1 were coinflitrated with the GFP1-
171.1 reporter gene into N. benthamiana as described previously
(5). Our results revealed that neither WT P1, containing one
WG/GW motif, nor H109W or H139W mutant P1, having two
WG/GW motifs, demonstrated silencing suppressor activity.
However, H109W/Y139W mutant P1, having three WG/GW mo-
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FIG 1 Analysis of SPFMV P1. (A) WG/GW motifs of SPFMV P1 and their corresponding SPMMV P1 parts. WG/GW amino acid duplets are underlined.
Numbers indicate amino acid positions. In SPFMV P1, histidine 109 and tyrosine 139 are in bold. (B) Standard 35S-GFP agroinfiltration analysis of WT and
mutant SPFMV P1 proteins. Infiltrated leaves at 3 days postinfection were illuminated with a hand-held UV lamp (Blak Ray B-100AP UV lamp; UVP), and
pictures were taken with the camera of the iPhone 4S. (C) RNA and protein extracts of infiltrated patches were used to detect GFP expression by Northern
and Western blotting. (D) Agroinfiltration analysis of WT and mutant SPFMV P1 proteins to inhibit active RISC. (E) Detection of GFP expression by Northern
and Western blotting at 2 days postinfection.
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tifs, showed a potent ability to inhibit active RISC (Fig. 1D).
Northern and Western blotting detected high GFP and suppressor
expression by H109W/Y139W mutant SPFMV P1, as well as by
the positive control (Fig. 1E). However, the WT and mutant
SPFMV P1 proteins, which did not show suppressor activity,
could be detected only when they coinfiltrated plants with Tobacco
etch virus HC-Pro (9) (data not shown).

To test AGO binding capacity, the HA-tagged WT and mu-
tant forms of SPFMV P1 were used for coinfiltration with
6�mycAGO1 (16) and a 35S-GFP inverted repeat. To avoid the
effect of RNA silencing, the GFP16c/RDR6i N. benthamiana
line was used in this experiment, which does not have silencing
against (even transiently expressed) transgenes (5, 11). West-
ern and Northern analyses of inputs and eluates of immuno-
precipitations of the HA-tagged WT and mutant SPFMV and
SPMMV P1 proteins were carried out. Small-RNA-loaded
AGO binding ability was detected in the SPFMV H109W/
Y139W mutant and WT SPMMV P1 proteins but not in the
SPFMV WT or H109W or Y139W mutant P1 protein (Fig. 2),
thus indicating that silencing suppressor activity strongly cor-
related with the capability of AGO binding. Any of the two
WG/GW motifs was sufficient for silencing of suppressor ac-
tivity and AGO binding in the case of SPMMV P1 (5). How-
ever, three WG/GW motifs were absolutely required for
SPFMV P1 to gain silencing suppressor activity.

Bioinformatic analysis showed a close evolutionary relationship
between the P1 proteins of SPMMV and SPFMV (14). Although WT
SPFMV P1 did not show any silencing suppressor activity, remodel-
ing of the AGO hook by changing only two amino acids to trypto-
phan resulted in a protein that inhibits active RISC by the same mech-
anism as the SPMMV P1 prototype (5). Thus, the close evolutionary
relationship between the P1 proteins of SPMMV and SPFMV was
further proven by our functional analyses. SPFMV, in a synergistic
interaction with Sweet potato chlorotic stunt virus (SPCSV), causes the
very severe sweet potato virus disease (8). RNase 3 protein, the silenc-
ing suppressor of SPCSV, was found to mediate viral synergism be-
tween SPCSV and SPFMV (2). In such a synergistic interaction, one
powerful suppressor can support the spread of two viruses and that

might explain why SPFMV P1 did not bear silencing suppressor ac-
tivity.

Finally, to our knowledge, this is the first instance in which a
viral protein of unknown function was turned into a functional
RNA silencing suppressor.
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